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Abstract. The exact solution for a system with two-particle annihilation and decoagulation has
been studied. The spectrum of the Hamiltonian of the system is found. It is shown that the steady
state is twofold degenerate. The average number density at each site 〈ni(t)〉 and the equal-time two-
point functions 〈ni(t)nj (t)〉 are calculated. Any equal-time correlation functions at large times,
〈ni(∞)nj (∞) · · ·〉, are also calculated. The relaxation behaviour of the system toward its final
state is investigated and it is shown that generally it is exponential, as expected. For the special
symmetric case, the relaxation behaviour of the system is a power law. For the asymmetric case, it
is shown that the profile of deviation from the final values is an exponential function of the position.

1. Introduction

In recent years, reaction–diffusion systems have been studied by many people, using different
methods. Among them are the field-theoretic methods, which allow for perturbative approaches
to build up correlations in low dimensions [1, 2]. As mean-field techniques cannot be used for
low-dimensional systems, people are motivated to study stochastic models in low dimensions,
which can be solved exactly. Moreover, solving one-dimensional systems should, in principle,
be easier. Applying a similarity transformation on an integrable model, one may construct
stochastic models, their integrability may not be obvious. Recently, some people have studied
such transformations [3–8].

Exact results for some models in a one-dimensional lattice have been obtained, for
example, in [3, 9]. In these cases, the time evolution of the system is determined by a master
equation [10]. Models with no diffusion received less attention in the literature [11–14]. It
is said that unless the system has long-range reactions [12, 13], the time dependence involves
exponential relaxation rather than power-law behaviour typical of the fast diffusion reactions.

In [15], a 10-parameter family of stochastic models has been studied. In these models,
the k-point equal-time correlation functions 〈ninj · · · nk〉 satisfy linear differential equations
involving no higher-order correlations. These linear equations have been solved for the
average density 〈ni〉. However, this set of equations may not be solved easily for higher-
order correlation functions. The spectrum is also partially obtained. The model which we
address in this paper is a special case of that 10-parameter stochastic model.

In this work, we report the exact solution for a system with two-particle annihilation and
decoagulation. This model may be considered as a biased voting model, in the sense that there
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are two different opinions. If the two people on two adjacent sites have different opinions,
they may interact so that their opinions become the same. The bias parameter corresponds to
the dominance of the left (or right) site. In the absence of bias, this system is equivalent to
the zero-temperature Glauber model [16, 17]. This system is related a free fermion system,
through a similarity transformation, and hence is solvable. Note that the system itself is not a
free fermion system and cannot be solved by only applying the Jordan–Wigner transformation.

When there is right–left symmetry, the average density decays to its final value in the form
of a power law (t−1/2). However, in the general case (a biased model) it decays in the form of
an exponential. Moreover, the profile of the deviation of the average density from its final value
is not uniform but exponential in terms of the site number. In fact, the parameter representing
the right–left asymmetry, in some sense, determines the dominance of the right-hand sites over
the left-hand sites, or vice versa.

The spectrum of the Hamiltonian of the system is found. It is shown that the steady state
is twofold degenerate. The probability of finding the system in each of these two states is
determined by the initial average density, and is time independent. It is shown that at large
times, any n-point function is equal to the one-point function, which is position independent.

〈ni(∞)nj (∞) · · · nk(∞)〉 = 〈ni(∞)〉 = 1

L

∑
m

〈nm(0)〉. (1)

This is due to the fact that the system has two steady states; either completely full, or completely
empty, as will be shown. This means that the mean-field approach does not work and this system
is highly correlated.

The paper is organized as follows. In section 2, similarity transformations relating
stochastic systems to other (stochastic or non-stochastic) systems are investigated. In section 3,
a solvable model is obtained through a similarity transformation on a free-fermion system. The
spectrum of the system is also obtained in this section. In section 4, the one-point function is
calculated and its large-time behaviour is investigated. In section 5, the two-point function and
its limiting behaviour is obtained. In section 6, the null vectors of the Hamiltonian are obtained
and from that the steady state of the system is obtained in terms of its one-point function at
t = 0. Finally, in section 7 we consider the next-to-leading term of the one-point function at
large times, and from this we obtain the way in which the system relaxes to its final state.

2. Similarity transformations as a method for obtaining solvable stochastic models

Here some standard material [2, 3, 5] is introduced, just to fix notation. The master equation
for P(σ, t) is

∂

∂t
P (σ, t) =

∑
τ �=σ

[
ω(τ → σ)P (τ, t) − ω(σ → τ)P (σ, t)

]
(2)

where ω(τ → σ) is the transition rate from the configuration τ to σ . Introducing the state
vector

|P(t)〉 =
∑
σ

P (σ, t)|σ 〉 (3)

where the summation runs over all possible states of the system, one can write the above
equation in the form

∂

∂t
|P 〉 = H|P 〉 (4)
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where the matrix elements of H are

〈σ |H|τ 〉 = ω(τ → σ) τ �= σ

〈σ |H|σ 〉 = −
∑
τ �=σ

ω(σ → τ). (5)

The basis {〈σ |} is dual to {|σ 〉}, that is

〈σ |τ 〉 = δσ,τ . (6)

The operator is H is called a Hamiltonian, and it is not necessarily Hermitian. However, it has
some properties. Conservation of probability,∑

σ

P (σ, t) = 1 (7)

shows that

〈S|H = 0 (8)

where

〈S| =
∑
β

〈β|. (9)

So, the sum of each column of H, as a matrix, should be zero. As 〈S| is a left eigenvector
of H with zero eigenvalue, H has at least one right eigenvector with zero eigenvalue. This
state corresponds to the steady-state distribution of the system and it does not evolve in time.
If the zero eigenvalue is degenerate, the steady state is not unique. The transition rates are
non-negative, so the off-diagonal elements of the matrix H are non-negative. Therefore, if a
matrix H has the following properties:

〈S|H = 0

〈σ |H|τ 〉 � 0
(10)

then it can be considered as the generator of a stochastic process. The real part of the eigenvalues
of any matrix with the above conditions should be less than or equal to zero.

The dynamics of the state vectors (4) is given by

|P(t)〉 = exp(tH)|P(0)〉 (11)

and the expectation value of an observable O is

〈O〉(t) =
∑
σ

O(σ )P (σ, t) = 〈S|O exp(tH)|P(0)〉. (12)

If H is integrable, one can solve the problem, that is, one can calculate the expectation values.
Suppose now, that a Hamiltonian is integrable but is not stochastic. There arises a question as
to whether or not there exists a similarity transformation which transforms it to a stochastic
integrable Hamiltonian. Consider an integrable Hamiltonian H̃. The similarity transformation

H := BH̃B−1 (13)

leaves its eigenvalues invariant. Consider a special case: the system consists of a one-
dimensional lattice, with nearest-neighbour interaction,

H̃ =
L∑
i=1

H̃i,i+1. (14)
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Suppose, also, that the system is translation invariant:

H̃i i+1 = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗H̃ ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L−i−1

(15)

and we are using periodic boundary conditions. A simple class of similarity transformations
is then

B = �1 ⊗ �2 ⊗ · · · ⊗ �L. (16)

The simplest case is when all �is are the same. In this case, if one can find � such that

H = � ⊗ �H̃�−1 ⊗ �−1 (17)

is stochastic, then H defined through (13) would be stochastic. A more general class of
similarity transformations is obtained through

�i := �(g)i (18)

where g should have the property

[g ⊗ g, H̃ ] = 0. (19)

In this case, one obtains

H = (� ⊗ �g)H̃ (� ⊗ �g)−1. (20)

Define 〈s| to be the sum of all bra-states corresponding to a single site. We then have

〈S| = 〈s| ⊗ · · · ⊗ 〈s|︸ ︷︷ ︸
L

. (21)

For H to be stochastic, its off-diagonal elements should be non-negative, and we must have

〈s| ⊗ 〈s|H = 0. (22)

This shows that

〈α| ⊗ 〈β| := 〈s|� ⊗ 〈s|�g (23)

should be an eigenvector with zero eigenvalue of H̃ , that is, H̃ should have a decomposable
left eigenvector. So, in order for this prescription of constructing an integrable stochastic
model to work, one must begin with a Hamiltonian H̃ , for which the left eigenvector with zero
eigenvalue is decomposable. The real part of all other eigenvalues of H̃ should, of course, be
non-positive.

3. A one-parameter solvable system on the basis of a free-fermion system

Consider the Hamiltonian

H̃ =
L∑
i=1

{
1 + η

2
[s+

i+1s
−
i − ni(1 − ni+1)] +

1 − η

2
[s−

i+1s
+
i − ni+1(1 − ni)]

+λ[s−
i+1s

−
i − nini+1]

}
(24)

where s+, s− and n are

s+ :=
(

0 1

0 0

)
s− :=

(
0 0

1 0

)
n :=

(
1 0

0 0

)
(25)
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and the subscript i represents the site on which the operator acts. This Hamiltonian describes
the following processes:

A∅ → ∅A with the rate
1 + η

2

∅A → A∅ with the rate
1 − η

2
AA → ∅∅ with the rate λ.

(26)

This model has been studied recently. In the case λ = 0, the above model describes
an asymmetric exclusion process. For λ = 1, the Hamiltonian is bilinear in terms of
creation s+ and annihilation s− operators. This problem has been solved via a Jordan–Wigner
transformation [18, 19]. In the notation of the previous section the matrix form of H̃ is

H̃ :=




−λ 0 0 0

0 − 1
2 (1 + η) 1

2 (1 − η) 0

0 1
2 (1 + η) − 1

2 (1 − η) 0

λ 0 0 0


. (27)

This matrix has two eigenvalues, 0 and −1, both of which are two-fold degenerate. One of
the zero left eigenvectors can be decomposed into a tensor product. Performing the above-
mentioned procedure, this Hamiltonian can be transformed into another stochastic one. For
this case, one can show that the matrix g is the identity matrix, and the similarity transformation
for all sites become the same. This has been done in [4].

One of the left eigenvectors corresponding to the eigenvalue −1 also has the desired
property. To use the prescription described in the previous section to construct a stochastic
Hamiltonian, we define a new Hamiltonian,

H̃ ′ := −H̃ − 1 (28)

and apply the similarity transformation on this new Hamiltonian. One of the zero left
eigenvectors of H̃ ′ is

(1 0 0 0) = (1 0) ⊗ (1 0). (29)

The similarity transformation should map 〈s| ⊗ 〈s| to this vector:

(1 1)� ⊗ (1 1)�g = α(1 0) ⊗ (1 0). (30)

So,

(1 1)� = αν(1 0)

(1 1)�g = α

ν
(1 0).

(31)

Scaling � and g does not alter the Hamiltonian H . So we can remove α and ν by scaling the
matrices � and g. Then the above relation gives some constraints on the elements of � and g.
The condition of positivity of rates, fixes g and �:

� = 1

2

(
1 −1

1 1

)
(32)

g =
(

1 0

0 −1

)
. (33)
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The two-site Hamiltonian, then, takes the following form:

H =




0 1
2 (1 − η) 1

2 (1 + η) 0

0 −1 0 0

0 0 −1 0

0 1
2 (1 + η) 1

2 (1 − η) 0


 (34)

and H is

H =
L∑
i=1

{
1 − η

2

[
nis

+
i+1 + (1 − ni)s

−
i+1)

]
+

1 + η

2

[
s+
i ni+1 + s−

i (1 − ni+1)
]

− [ni(1 − ni+1) − (1 − ni)ni+1]

}
. (35)

This Hamiltonian describes the following processes:

A∅ → AA
1 − η

2

A∅ → ∅∅ 1 + η

2

∅A → AA
1 + η

2

∅A → ∅∅ 1 − η

2
.

(36)

The Hamiltonian (35) is not quadratic in s+ and s−. So, one cannot map this Hamiltonian to
a free fermion system, using a Jordan–Wigner transformation. However, the Hamiltonian H̃
is integrable and can be mapped to a free fermion system by a Jordan–Wigner transformation.
Consider the following Jordan–Wigner transformation [18, 19]:

aj := Qj−1s
−
j

a
†
j := Qj−1s

+
j

Qj :=
j∏

i=1

(−s3
i ).

(37)

It can be easily shown that the number operator at each site ni is, in terms of new generators,

ni := 1 + s3
i

2
= a

†
i ai . (38)

Using this transformation, the Hamiltonian H̃ takes the following form:

H̃ =
L∑
i=1

[
1 − η

2
a

†
i ai+1 +

1 + η

2
a

†
i+1ai + ai+1ai − a

†
i ai

]
. (39)

ai and a
†
i fulfil the fermionic anti-commutation relations

{ai, aj } = {a†
i , a

†
j } = 0

{ai, a†
j } = δij .

(40)
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Note that it is in the limit L → ∞ that the Jordan–Wigner transformation we are using,
works. Otherwise, there are some boundary terms in (39) as well. So, all the results we obtain
hereafter, are valid only in this limit. Now, introducing the Fourier transformation

aj := 1√
L

∑
k

bk exp

{
2π ijk

L

}

a
†
j := 1√

L

∑
k

b
†
k exp

{−2π ijk

L

} (41)

and substituting it in (40), it is seen that

{bk, bl} = {b†
k, b

†
l } = 0

{bk, b†
l } = δkl .

(42)

As a result, the Hamiltonian H̃ takes the form

H̃ =
∑
k

[
1 − η

2
exp

(
2π ik

L

)
+

1 + η

2
exp

(−2π ik

L

)]
b

†
kbk + b−kbk exp

(−2π ik

L

)
− b

†
kbk

=
∑
k

[
εkb

†
kbk − i sin

(
2πk

L

)
b−kbk

]
(43)

where

εk := −1 + cos

(
2πk

L

)
− iη sin

(
2πk

L

)
. (44)

One can now easily obtain the time dependence of bk and b
†
k , using (42) and dO/dt = [O,H ]

bk(t) = bk(0) eεk t

b
†
k(t) = e−εk t

{
b

†
k(0) − i cot

(
πk

L

)[
e(εk+ε−k)t − 1

]
b−k(0)

}
.

(45)

Now we return to our problem: determining the expectation values of a system evolving with
the Hamiltonian H. The expectation value of a quantity O is

〈O〉(t) = 〈S|O exp(tH)|P(0)〉
= 〈S| exp(−tH)O exp(Ht)|P(0)〉. (46)

Substituting H = −BH̃B−1 − L1, where 1 denotes the identity matrix, yields

〈O〉(t) = 〈%|Õ(−t̃ )B−1|P(0)〉 (47)

where

Õ := B−1OB (48)

Õ(−t̃ ) := etH̃Oe−tH̃ (49)

and

〈%| := (
1 0

)⊗ (
1 0

)⊗ · · · ( 1 0
)
. (50)

The main expectation values of interest are the correlation functions of ni . To determine these,
we use

�−1n� = 1
2 (1 − s+ − s−)

(�g)−1n�g = 1
2 (1 + s+ + s−).

(51)
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So

B−1niB = 1
2 [1 − (−1)i(s+ + s−)]. (52)

Now, we want to calculate the expectation value of O where

O := nim · · · ni2ni1 i1 < i2 < · · · < im. (53)

We have

Õ = 1

2m

[
1 − (−1)im(s+

im
+ s−

im
)
] · · · [1 − (−1)i1(s+

i1
+ s−

i1
)
]
. (54)

Using the Jordan–Wigner transformation, one arrives at

Õ = 1

2m

[
1 − (−1)imQim−1(a

†
im

+ aim)
] · · · [1 − (−1)i1Qi1−1(a

†
i1

+ ai1)
]
. (55)

It is easy to check that 〈%|Qi = (−1)i〈%|. So in calculating 〈O〉, one can use O′ instead of
Õ:

O′ := 1

2m

[
1 + (a

†
im

+ aim)
] · · · [1 + (a

†
i1

+ ai1)
]
. (56)

Instead of O′, It is enough to set O′′ in the expectation value of O, where

O′′ := 1

2m

(
1 + a

†
im

) · · · (1 + a
†
i1

)
. (57)

To prove this, one should use 〈%|H̃ = −L〈%| and 〈%|ai(0) = 0.

4. The one-point function

As the first example, consider the one-point function 〈nm(t)〉:
〈nm(t)〉 = 1

2 〈%|[1 + a†
m(−t̃ )]B−1|P(0)〉. (58)

Using the Fourier transformation (41), the time dependence of b
†
k (45) and remembering

〈%|bk(0) = 0, we obtain

〈nm(t)〉 = 1

2
+

1

2
√
L

∑
k

e−2π ikm/L〈%|b†
k(0)B−1|P(0)〉eεk t . (59)

Now, we use the inverse Fourier and Jordan–Wigner transformations, and arrive at

〈nm(t)〉 = 1

2
+

1

2L

∑
k,j

e2π ik(j−m)/L〈S|Bs+
j B−1|P(0)〉eεk t (−1)j−1. (60)

This can be written in a simpler form, using

Bs+
j B−1 = (−1)j−1

2nj − 1 + s−
j − s+

j

2
(61)

and

〈s|(2n − 1) = 〈s|(s− − s+). (62)

One then arrives at

〈nm(t)〉 = 1

2
+

1

2L

∑
k,j

e2π ik(j−m)/L〈S|(2nj (0) − 1)|P(0)〉eεk t . (63)
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Using 〈S|P(0)〉 = ∑
σ P (σ, 0) = 1, one arrives at

〈nm(t)〉 =
∑
j

'mj (t)〈nj (0)〉 (64)

where

'mj(t) := 1

L

∑
k

e2π ik(j−m)/Leεk t . (65)

Now, consider the limit t → ∞. In this limit, the only contribution in the above summation
comes from the term k = 0. So,

lim
t→∞〈nm(t)〉 = 1

L

∑
j

〈nj (0)〉 (66)

which shows that in the limit t → ∞, the expectation value of the number of particles in any
site tends to the average of the initial value of this quantity. In the final section, we will find
the next leading term of 〈ni(t)〉, for large times.

Now, we want to calculate the expectation value of the number of particles at the site j in
the limit L → ∞. First, we calculate 'mj in this limit. To do so, we define z := exp(i2πk/L).
We then (in this limit) arrive at

'mj(t) = e−t

∮
dz

2π iz
zj−m exp

[
t
(

1
2 (1 − η)z + 1

2 (1 + η)z−1
)]
. (67)

Changing the variable z to w := z

√
1+η
1−η

, the above integral takes the form

'mj(t) = e−t

(
1 − η

1 + η

)(j−m)/2 ∮ dw

2π iw
wj−m exp

[
t

√
1 − η2

2
(w + w−1)

]
(68)

or, using the change of variable w := eiθ ,

'mj(t) = e−t

(
1 − η

1 + η

)(m−j)/2 ∫ 2π

0

dθ

2π
ei(j−m)θ+t

√
1−η2 cos θ . (69)

The above integral is an integral representation of the modified Bessel function:

'mj(t) =
(

1 − η

1 + η

)(m−j)/2

Im−j (t
√

1 − η2)e−t . (70)

〈nm(t)〉, in the limit L → ∞, is then

〈nm(t)〉 =
∑
j

(
1 − η

1 + η

)(m−j)/2

Im−j (t
√

1 − η2)e−t 〈nj (0)〉. (71)

5. The two-point function

The other quantity which we want to calculate is 〈nm(t)nl(t)〉. Without loss of generality, one
may assume (m > l). To calculate this, we use (57), which gives

〈nm(t)nl(t)〉 = 1
4 〈%|[1 + a†

m(−t̃ )][1 + a
†
l (−t̃ )]B−1|P(0)〉

= − 1
4 + 1

2 [〈nm(t)〉 + 〈nl(t)〉] + 1
4 〈%|a†

m(−t̃ )a
†
l (−t̃ )B−1|P(0)〉. (72)
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The main thing is to calculate the last term. To do this, we first use the Fourier transformation
of a†

i s,

〈%|a†
m(−t̃ )a

†
l (−t̃ ))B−1|P(0)〉 = 1

L

∑
k,p

e−i2π(km+pl)/L〈%|b†
k(−t̃ )b†

p(−t̃ )B−1|P(0)〉 (73)

and then substitute the time dependence of b†
ks.

〈%|a†
m(−t̃ )a

†
l (−t̃ ))B−1|P(0)〉 = 1

L

∑
k,p

e−i2π(km+pl)/L+(εk+εp)t 〈%|b†
k(0)

×
[
b†
p(0) + i cot

(
πp

L

) (
1 − e−(εp+ε−p)t

)
b−p(0)

]
B−1|P(0)〉. (74)

Now we use the inverse Fourier transformation for the b
†
kb

†
p term. The other term is easily

summed. We arrive at,

〈%|a†
m(−t̃ )a

†
l (−t̃ )B−1|P(0)〉 =

∑
r,s

'mr(t)'ls(t)〈%|a†
r a

†
s B−1|P(0)〉

+
i

L

∑
k

ei2πk(l−m)/L cot

(
πk

L

) (
1 − e(εk+ε−k)t

)
(75)

or,

〈%|a†
m(−t̃ )a

†
l (−t̃ )B−1|P(0)〉 =

∑
k,p,r,s

'mr(t)'ls(t)〈(2nr − 1)(2ns − 1)〉0 sgn(r − s)

+
i

L

∑
k

ei2πk(l−m)/L cot

(
πk

L

) (
1 − e(εk+ε−k)t

)
(76)

where we have used the definition of 'ij , and 〈· · ·〉0 means the expectation value at the initial
time. Adding all terms in (72) together, one arrives at

〈nm(t)nl(t)〉 = − 1
4 (〈nm(t)〉 + 〈nl(t)〉) +

∑
r,s

'mr(t)'ls(t)〈(nr − 1
2 )(ns − 1

2 )〉0 sgn(r − s)

+
i

4L

∑
k

ei2πk(l−m)/L cot

(
πk

L

) (
1 − e(εk+ε−k)t

)
. (77)

The last term is independent of the initial conditions. So we can calculate it for a special case,
e.g. |P(0)〉 = |0〉. Then, the final result is

〈nm(t)nl(t)〉 = 1
2 (〈nm(t)〉 + 〈nl(t)〉) +

∑
r,s

'mr(t)'ls(t) sgn(r − s)〈nrns − 1
2 (nr + ns)〉0.

(78)

For large times, it is seen that

lim
t→∞〈nm(t)nl(t)〉 = 〈n(∞)〉. (79)

6. Null vectors of the Hamiltonian, the steady state of the system and the n-point
function

Now we want to study the null eigenvectors of the Hamiltonian H. It is easy to see that the
Hamiltonian (35) has at least two null eigenvectors, which means that the steady state is not
unique. These states are one in which all sites are occupied, and one in which no site is
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occupied. One can check this easily by acting the Hamiltonian (35) on these states. It was
shown that the Hamiltonian H̃ may be written as

H̃ =
∑
k

[
εkb

†
kbk − i sin

(
2πk

L

)
b−kbk

]

=
∑
k>0

[
εkb

†
kbk + ε−kb

†
−kb−k − 2i sin

(
2πk

L

)
b−kbk

]
+ ε0b

†
0b0. (80)

This Hamiltonian is obviously block diagonal. In each four-dimensional block, one can choose
a basis {|0〉, b†

k |0〉, b†
−k|0〉, b†

kb
†
−k|0〉}. The eigenvalues of this four-dimensional block are

0, εk, ε−k, εk + ε−k or Nkεk + N−kε−k , where the N s are zero or one. The eigenvalues of the
Hamiltonian are, therefore,

Ẽ{N } =
∑
k

Nkεk. (81)

From this, one can obtain the eigenvalues of H as

E{N } = −
∑
k

(Nkεk + 1)

=
∑
k

(−Nk + 1)εk. (82)

Here we have used∑
k

(1 + εk) = 0. (83)

Now, it is easy to see thatE is zero iff 1−Nk = 0, ∀k �= 0. This shows that the null eigenvector
is twofold degenerate. As the final state is twofold degenerate, and it is known that the totally

full state
(|%〉 := ( 1

0

)⊗ ( 1

0

)⊗ · · · ( 1

0

))
and totally empty state

(|0〉 := ( 0

1

)⊗ ( 0

1

)⊗ · · · ( 0

1

))
are null eigenvectors of the system, we have

|P(∞)〉 = α|0〉 + β|%〉 (84)

where α + β = 1. Using (66), and

〈S|ni |0〉 = 0 〈S|ni |%〉 = 1 (85)

it is seen that

β = 〈n(∞)〉 = 1

L

∑
j

〈nj (0)〉 =: ρ0 (86)

and

α = 1 − ρ0. (87)

From this, one obtains

|P(∞)〉 = [1 − ρ0]|0〉 + ρ0|%〉. (88)

Using this, it is easy to find all m-point functions in the limit t → ∞. We have

〈nim · · · ni1〉(∞) = 〈S|nim · · · ni1 |P(∞)〉
= ρ0

= 〈n(∞)〉
�= 〈n(∞)〉m. (89)

This clearly shows that the mean-field approximation does not work here.
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7. Relaxation of the system toward its steady state

It was shown that in the limit t → ∞, the expectation of the number of particles in any site
tends to the average of the initial value of this quantity. Now, we want to study the behaviour of
the system at large times. Starting from (71), and representing 〈nj (0)〉 by its Fourier transform,
we have

〈nm(t)〉 = e−t

∫ 2π

0

du

2π

∑
j

(
1 − η

1 + η

)(m−j)/2

Im−j (t
√

1 − η2) e−iuj [f (u) + 2πn̄δ(u)] (90)

where [f (u) + 2πn̄δ(u)] is the Fourier transform of 〈nj (0)〉 and n̄ is the average density. We
have extracted this part of the Fourier transform, so that the remaining is a smooth function of
u. Then, f (u) denotes the Fourier transform of the deviation 〈nj (0)〉 − n̄. The summation on
j is easily done, using∑

n

xnIn(y) = e(y/2)(x+1/x). (91)

So, one arrives at

〈nm(t)〉 = n̄ +
∫ 2π

0

du

2π
etε(u)f (u) e−imu (92)

where ε(u) is the same as εk with k = Lu/(2π). The above integral is simplified for large
times, using the steepest-descent method. Using the change of variable z := eiu, the integral
becomes

〈nm(t)〉 = n̄ +
∮

dz

2π iz
et[−2+(1−η)z+(1+η)z−1]/2f̃ (z)z−m (93)

where the integration contour is the unit circle. The multiplier of t in the exponent is stationary
at

z1 =
√

1 + η

1 − η
(94)

and

z2 = −
√

1 + η

1 − η
. (95)

As the real part of this multiplier is larger at z = z1, the integral gets its main contribution from
this point. (This point is not on the integration contour. However, assuming f̃ to be analytic,
one deforms the integration contour so that it passes from z1, and then uses the steepest-descent
method.) We arrive at

〈nm(t)〉 − n̄ ∼ 1√
t

(
1 − η

1 + η

)m/2

et (
√

1−η2−1). (96)

The effect of the Fourier transform f̃ , and the second derivative of the multiplier of t in the
exponent is a multiplier independent of m and t . Two general features, independent of the
initial condition, are seen from the above relation. First, the decay to the final state is not in
the form of a power law, but in the form of an exponential. It becomes a power law only in the
symmetric case η = 0. Second, if η > 0, the expectation at the rightmost sites tends rapidly
to its final value. That is, the profile of the deviation from the final value is decreasing with



Similarity transformation in 1D reaction–diffusion systems 7855

respect to m. This is so, since in this case the two-site reaction is favourable to the state where
the left-hand site changes so that it becomes identical to the right-hand site. This means that
cases where the right-hand site changes are less probable than cases where the left-hand site
changes. So, the right-hand site arrives earlier to its final state. This expression seems to be
unbounded for either m → ∞ or m → −∞. For any fixed t , this is true. However, it simply
means that in order that this term represents the leading term for some m, t must be greater
than some T , which does depend on m.
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